which equation represents the data in the table? check all that apply

Accepted Solution

Answer:[tex]y-6=-\frac{5}{4}(x+2)[/tex][tex]y-1=-\frac{5}{4}(x-2)[/tex][tex]y-3.5=-1.25x[/tex]Step-by-step explanation:step 1Find the slope of the linear equationwith the points (-2,6) and (2,1)The formula to calculate the slope between two points is equal to [tex]m=\frac{y2-y1}{x2-x1}[/tex] substitute[tex]m=\frac{1-6}{2+2}[/tex] [tex]m=-\frac{5}{4}[/tex] step 2Find the equation of the line into point slope formThe equation of the line in slope point form is equal to[tex]y-y1=m(x-x1)[/tex]we have[tex]m=-\frac{5}{4}[/tex] 1) with the point (-2,6)substitute[tex]y-6=-\frac{5}{4}(x+2)[/tex]2) with the point (2,1)substitute[tex]y-1=-\frac{5}{4}(x-2)[/tex]3) with the point (0,3.5)substitute[tex]y-3.5=-\frac{5}{4}(x-0)[/tex][tex]y-3.5=-\frac{5}{4}x[/tex] -------> [tex]y-3.5=-1.25x[/tex]